
S-114.220 Research-oriented Graduate Seminar on Complex Systems

Exercise 3 – The Brusselator model

Deadline 29.3.2004

Send any questions, comments and the assignment reports to Teemu Leppänen.
Tel. 451 4837, Room E356 at LCE, Email: tileppan@lce.hut.fi.

The objective of this assignment together with the lecture is to introduce to the
student some basics ideas of pattern formation in Turing reaction-diffusion
systems. In this assignment you will gain insight to basic analytical methods
related to nonlinear systems and then carry out numerical simulations of a
Brusselator model using the parameters you have predicted analytically. For
the interesting historical background and the hypothetical biological relev-
ance of Turing systems the student is referred to literature [1, 2, 3, 4].

1 Introduction to the Brusselator model

British mathematician Alan Turing showed in 1952 that a particular mathematical sys-
tem could produce spatial patterns from an arbitrary initial state. In its most generic
form a Turing model describing chemical diffusion and reactions with respect to the
chemical concentrations U and V can be written in the form

∂U

∂t
= DU∇

2U + f(U, V )

∂V

∂t
= DV ∇2V + g(U, V ), (1)

where DU and DV are the diffusion coefficients setting the pace of diffusion for chem-
icals U and V , respectively. Notice that for the reaction kinetics f(U, V ) ≡ g(U, V ) ≡
0 the system reduces to two independent diffusion equations. The coupling via the
reaction kinetics is typically nonlinear.

A reaction-diffusion model often corresponds to real chemical reactions and reac-
tion formulae. The Brusselator model used in this assignment was developed in the
1970s in Brussels by Nobel laureate Ilya Prigogine among others. The Brusselator
model is one of the simplest chemical models exhibiting a pattern forming instability
called Turing instability. In the case of the Brusselator model the chemical reactions
are given as

A → U

B + U → V

2U + V → 3U

U → E, (2)

where U and V are spatially and temporally varying chemical concentrations, whereas
the concentrations of the chemicals A, B and E are kept constant. Using the law
of mass action [3] one can derive the mathematical equations corresponding to the
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reaction scheme defined by Eq. (2). The reaction kinetics of the Brusselator model is
given by

f(U, V ) = A − (B + 1)U + U 2V

g(U, V ) = BU − U2V. (3)

Including the diffusion and time variation (as in Eq. (1)) leads to the Brusselator model
given by

Ut = DU∇
2U + A − (B + 1)U + U2V

Vt = DV ∇2V + BU − U2V, (4)

where A and B are scalar parameters, which govern the pattern selection in the model
by defining the reaction kinetics. The values of A and B will be determined in the next
section. In order to obtain spatial patterns, it is always required that DU 6= DV (see
Refs. [2, 3] for more on this).

2 Analysis of the Brusselator model

As one is interested in the pattern forming properties of a nonlinear reaction-diffusion
model, one typically first determines the stationary state of the model in the absence of
diffusion. This is done by solving the system in Eq. (4) with conditions ∂U

∂t
= ∂V

∂t
= 0

and DU = DV = 0.

Problem 1: What is the stationary state (U0, V0) of the Brusselator model?

In order to simplify the further analysis, a change of variables is typically carried
out to make (0, 0) the stationary state. This is achieved by making the substitutions
U = U0 + u and V = V0 + v to Eq. (4).

Problem 2: Write the Brusselator model using the new scaled concentrations
u and v, and check that (u0, v0) = (0, 0).

The theory by Turing predicts that a spatially uniform stationary state that is stable
against perturbations in the absence of diffusion might become unstable against per-
turbations in the presence of diffusion resulting in a pattern forming instability. This is
the most important characteristic of the Turing instability: If there are not any random
perturbations from the stationary state, that state will persist. In the absence of diffusion
the system will return to the stationary state, if the system is perturbed away from it. In
the presence of diffusion, however, the perturbed system will evolve towards another
spatially nonuniform steady-state, i.e., a spatial concentration pattern will appear.

The stability of a state can be studied by using linear analysis [2, 3]. The linearized
system can be written in the form ~wt = (D + A)~w and reads as

(

ut

vt

)

=

(

(

Du∇
2 0

0 Dv∇
2

)

+

(

fu fv

gu gv

)

(v0,v0)

)

(

u
v

)

, (5)

where fu, fv, gu and gv in the matrix A denote the partial derivatives of the reaction
kinetics, which are evaluated at the stationary state (u0, v0) = (0, 0).
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Problem 3: How does the linearized matrix A look like (use the kinetics of the
scaled model you calculated in Problem 2)?

In the absence of diffusion the stability of the system can be studied by calculating
the eigenvalues of the matrix A defined in Eq. (5). In the presence of diffusion one can
solve the eigenvalues by substituting a trial solution of the form w(~r, t) ∝ eλ(k)tei~k·~r

into the linearized system (Eq. (5)). This yields the characteristic equation |A−Dk2−
λI| = 0, i.e.,

∣

∣

∣

∣

fu − Duk2 − λ fv

gu gv − Dvk
2 − λ

∣

∣

∣

∣

= 0, (6)

where k2 = ~k · ~k is the modulus of the wave vector.

Problem 4: Write the characteristic equation (Eq. (6)) in the form λ2+B(k)λ+
C(k) = 0 and substitute the values defined by the matrix A (calculated in Problem
3) to the equation.

From the characteristic equation one can solve the dispersion relation, i.e., the two
eigenvalues λ1(k) and λ2(k). By plotting the real part of the bigger eigenvalue as
a function of the wave number k one can study the stability of the wave vectors ~k
corresponding to the wave number |~k| = k. Stable wave vectors are those for which
λ(k) < 0 and for the unstable ones λ(k) > 0. We want to find such parameter values
that there is a narrow wave window, i.e., there is only a limited amount of unstable
wave numbers k, which fix the spatial length of the pattern ` = 2π/k.

At the onset of the instability, which corresponds to the critical wave number kc the
eigenvalue or growth rate λ(kc) = 0. Thus the characteristic equation must satisfy
C(kc) = 0, which is a second order equation with respect to k2

c . The discriminant D
defined by the equation C(k2

c ) = 0 must be zero at the onset for the equation to have
only one solution. The modulus of the critical wave number k2

c can be solved from the
condition C(k2

c ) = 0 given that D = 0. In the case of the Brusselator model it is given
by k2

c = A
√

DuDv

.
In the Brusselator model the instability is governed by the bifurcation parameter B.

At the onset of the instability B = Bc. For B < Bc the stationary state is stable and
for B > Bc there is a critical unstable mode corresponding to the wave number kc.
Figure 1 in the appendix shows the dispersion relations corresponding to these three
different cases. The critical value Bc can be found from the characteristic equation. To
ease the search of Bc resulting in Turing instability, fix A = 4.5 and Dv = 8Du = 16.

Problem 5: Solve analytically the critical value Bc of the bifurcation para-
meter B with respect to the parameters A, Du and Dv from the condition D = 0.
Calculate also the numerical value of Bc using the given parameters.

Now you should have all the parameter values required for starting numerical sim-
ulations of the Brusselator model. To get spatial patterns you must use B > Bc. Linear
analysis predicts very efficiently the stability of a particular stationary states. It does
not, however, answer to the question about pattern selection, i.e., whether one will
obtain stripes or spots. Studying the pattern selection involves highly complex math-
ematical techniques, which will not be discussed here. Those, who are interested in the
nonlinear bifurcation analysis are suggested to study Ref. [2] and refereces therein.
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3 Numerical simulations of the Brusselator model

Solving reaction-diffusion models by hand is not possible due to their time-dependent
nature. Numerical simulations of reaction-diffusion models, on the other hand, are
not very complicated. Nevertheless, in this assignment most of the simulation code
(brusselator.c) is given and it requires only a few additions by the student.

In the numerical simulation the spatial dimension of the problem is discretized
into a lattice by using the finite difference method. In a two-dimensional system the
laplacian with respect to the concentration field U in the node (i, j) is calculated by

∇2
i,jU =

Ui+1,j + Ui−1,j + Ui,j+1 + Ui,j−1 − 4Ui,j

dx2
, (7)

where dx is the lattice constant corresponding to the length of spatial discretization.
The boundary conditions can be either zero-flux or periodic. The calculation of the
laplacian using periodic boundary conditions is already implemented in the given sim-
ulation code.

The time iteration is carried out by using the basic Euler’s method, where the time
derivative (LHS of Eq. (4)) is approximated with a difference. In this case it is (U t+dt−
U t)/dt, where the superscripts denote time and dt is the time step (suitable numerical
value is given in the code). Now the update step for the concentration fields U and V
may be written as follows

U t+dt
i,j = U t

i,j + dt · (DU∇
2
i,jU

t + f t
i,j),

V t+dt
i,j = V t

i,j + dt · (DV ∇2
i,jV

t + gt
i,j), (8)

where f t
i,j and gt

i,j are the reaction kinetics at point (i, j) at time t defined by Eq. (3).
Initial conditions U0 and V 0 typically used in simulations of Turing systems are ran-
dom perturbations around the stationary state (U0, V0). This comes down to the most
fascinating characteristic of Turing instability, i.e., the fact that it can create organized
patterns from a random initial state.

Problem 6: Complete the given code (brusselator.c) by adding the values
of the stationary states (Problem 1), an amplitude for the initial random deviations
from these states (var) and the time iteration for both U and V according to
Eq. (8). See the code for more instructions.

Now the code should be completed and ready to work. You must have four files
in order to carry out the simulations and visualize the results: brusselator.c (the
simulation code), ranmar.c (random number generator), Makefile (for compiling
the program), and visual.m (for visualization using Matlab). To compile the pro-
gram type make in the directory. After the complilation succeeds you can start the
simulation by typing e.g. simu 12345 12345 A B, where A and B are the numer-
ical values for the parameters you want to use (Problem 5). See the comments of the
code for more guidance.

In the code the system size has been fixed to 100×100 and the number of iterations
is 50000. You can change these and see what happens. The simulation program writes
a data file named data.m, which can visualized using the Matlab script visual.m.
This script visualizes both concentration fields (U and V ). Notice that the fields are
in anti-phase, i.e., the high concentration of U means low concentration of V and vice
versa.
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Problem 7: Carry out simulations for A = 4.5, DV = 8DU = 16 and try
out different values for the parameter B > Bc according to your calculations
(Problem 5). What kind of patterns do you get? Try to get at least stripes and
spots, save the figures and write down the corresponding parameter values.

One can check the agreement of the numerical results with the analytical predic-
tion by studying the characteristic length scale of the resulting pattern. The modulus of
the critical wave vector k2

c with respect to the system parameters was calculated pre-
viously. The characteristic wave length corresponding to this critical mode is given by
` = 2π/kc since dx = 1. By calculating the predicted characteristic length ` for the
parameters that one uses, one can approximately check the agreement between theory
and the results of the numerical simulations. The distance between stripes or spots
should correspond to `.

To conclude the assignment let us once more repeat the main point of Turing in-
stability. Turing predicted that a stationary state that is stable against perturbations in
the absence of diffusion may become unstable against perturbations in the presence of
diffusion. Using the code you have completed this theory is easy to test. In the fol-
lowing problem, use the parameter values that you used in Problem 7 to obtain spatial
patterns. You can decrease the number of iterations to 1000.

Problem 8: Test of Turing’s theory: 1) Keep DV = 8DU = 16 and set variable
var in the code equal to zero. What happens and why? 2) Fix DU = DV = 0 and
use non-zero amplitude of random perturbations (var). What happens and why?

4 Report requirements

Return a short report (handwritten or PS/PDF). The report should consist of answers to
all the problems and contain at least two figures of the simulation results (stripes&spots).

References

[1] P. Ball, The self-made tapestry: Pattern formation in nature, (Oxford University
Press, Oxford 2001).

[2] T. Leppänen, The theory of Turing pattern formation, available online at
http://www.lce.hut.fi/research/polymer/turing_review.pdf

[3] J.D. Murray, Mathematical Biology, 2nd. ed., (Springer-Verlag, Berlin 1993);
J.D. Murray, Mathematical Biology II: Spatial models and biomedical applic-
ations, (Springer-Verlag, Berlin 2003)

[4] T. Leppänen, Matemaatikko selätti seepran raidat (in Finnish), Tiede 1/2004.
Extended version available online at
http://www.lce.hut.fi/research/polymer/turing_popular.pdf

5



0 0.2 0.4 0.6 0.8 1 1.2
−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

wave number k

λ 
(k

)

 
B < B

c
 

λ(k
c
) < 0 k c

0 0.2 0.4 0.6 0.8 1 1.2
−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

wave number k

λ 
(k

)

 
B = B

c
 

λ(k
c
) = 0 

0 0.2 0.4 0.6 0.8 1 1.2
−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

wave number k

λ 
(k

)

 
B > B

c
 

λ(k
c
) > 0 

Figure 1: The dispersion relation λ(k) for three different cases. Top: the stationary
state is stable for B < Bc. Middle: At the onset B = Bc. Bottom: Turing instability
with B > Bc (unstable wave vectors are those with λ(|~k|) > 0).


